Bayesian Penalized Method for Streaming Feature Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Streaming Feature Selection

When learning predictive models that may require testing hundred of thousands of features in order to nd tens of signi cant features, it is often desirable to interleave feature generation with feature selection. New features (e.g. interaction terms) can then be generated lazily based on which features have already proven signi cant. We address three issues: 1) when feature selection is prefera...

متن کامل

Online Streaming Feature Selection

In the paper, we consider an interesting and challenging problem, online streaming feature selection, in which the size of the feature set is unknown, and not all features are available from learning while leaving the number of observations constant. In this problem, the candidate features arrive one at a time, and the learner's task is to select a “best so far” set of features from streaming f...

متن کامل

Online Streaming Feature Selection

We study an interesting and challenging problem, online streaming feature selection, in which the size of the feature set is unknown, and not all features are available for learning while leaving the number of observations constant. In this problem, the candidate features arrive one at a time, and the learner's task is to select a “best so far” set of features from streaming features. Standard ...

متن کامل

BASSUM: A Bayesian semi-supervised method for classification feature selection

Feature selection is an important preprocessing step for building efficient, generalizable and interpretable classifiers on high dimensional data sets. Given the assumption on the sufficient labelled samples, the Markov Blanket provides a complete and sound solution to the selection of optimal features, by exploring the conditional independence relationships among the features. In real-world ap...

متن کامل

Streaming Feature Selection using IIC

In Streaming Feature Selection (SFS), new features are sequentially considered for addition to a predictive model. When the space of potential features is large, SFS offers many advantages over methods in which all features are assumed to be known in advance. Features can be generated dynamically, focusing the search for new features on promising subspaces, and overfitting can be controlled by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2930346